Qualifying Exam. Complex Analysis. Spring 2019

Problem 1. Does there exists a function f holomorphic in the unit disk and such that

$$
f\left(2^{-2 n}\right)=2^{-n}
$$

for all positive integers n ?

Problem 2. Let f be a holomorphic function in $\{z: 0<|z-a|<1\}$. Suppose that f has a simple pole at a. For $0<\varepsilon<1$, we denote by γ_{ε} the curve

$$
\gamma_{\varepsilon}:[0, \pi] \rightarrow \mathbb{C}, \quad \gamma_{\varepsilon}(t)=a+\varepsilon e^{i t}
$$

Prove that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\varepsilon}} f(z) d z=\pi i \operatorname{res}_{a} f .
$$

Problem 3. Let f be an analytic (holomorphic) function in $\mathbb{D}=\{\zeta \in \mathbb{C}:|\zeta|<1\}$ such that $|f(\zeta)|<1, \zeta \in \mathbb{D}$. By considering the function g defined by

$$
g(\zeta)=\frac{f(\zeta)-f(0)}{1-\overline{f(0)} f(\zeta)}, \quad|\zeta|<1
$$

show that

$$
|f(\zeta)| \leq \frac{|f(0)|+|\zeta|}{1-|f(0)| \cdot|\zeta|}, \quad|\zeta|<1
$$

Problem 4. Does the function

$$
\sqrt{\frac{z+1}{z-1}}
$$

have a holomorphic branch in $\mathbb{C} \backslash[-1,1]$?

Problem 5. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\cos x}{\left(x^{2}+1\right)^{2}} d x
$$

